23 research outputs found

    E.A.I. Anxiety: Technopanic and Post-Human Potential

    Get PDF
    Robots have been a part of the imagination of Western culture for centuries. The possibility for automation and artificial life has inspired the curiosity of thinkers like Leonardo Da Vinci who once designed a mechanical knight. It wasn\u27t until the 19th century that automated machinery has become realized. The confrontation between human and automation has inspired a fear, referred to as technopanic , that has been exacerbated in tandem with the evolution of technology. This thesis seeks to discover the historical precedence for these fears. I explore three modes of knowledge (Philosophy, Economics, and Film Theory) to examine the agendas behind the messages on the topic of Artificial Life, specifically Robots. I then advocate for an alternative philosophy called Post-Humanism. I argue that what is needed to alleviate the fears and anxieties of Western culture is a shift in how humanity views itself and its relation to the natural world. By structuring my thesis in this way, I identify the roots of Western humanity\u27s anthropocentric ontology first, explore the economic implications of automation second, analyze the cultural anticipations of artificial life in Western media third, and finally offer an alternative attitude and ethic as a way out of the pre-established judgments that do little to protect Western culture from E.A.I

    NusG-Dependent RNA Polymerase Pausing and Tylosin-Dependent Ribosome Stalling Are Required for Tylosin Resistance by Inducing 23S rRNA Methylation in Bacillus subtilis

    No full text
    Antibiotic resistance is a growing health concern. Resistance mechanisms have evolved that provide bacteria with a growth advantage in their natural habitat such as the soil. We determined that B. subtilis, a Gram-positive soil organism, has a mechanism of resistance to tylosin, a macrolide antibiotic commonly used in the meat industry. Tylosin induces expression of yxjB, which encodes an enzyme that methylates 23S rRNA. YxjB-dependent methylation of 23S rRNA confers tylosin resistance. NusG-dependent RNA polymerase pausing and tylosin-dependent ribosome stalling induce yxjB expression, and hence tylosin resistance, by preventing transcription termination upstream of the yxjB coding sequence and by preventing repression of yxjB translation.Macrolide antibiotics bind to 23S rRNA within the peptide exit tunnel of the ribosome, causing the translating ribosome to stall when an appropriately positioned macrolide arrest motif is encountered in the nascent polypeptide. Tylosin is a macrolide antibiotic produced by Streptomyces fradiae. Resistance to tylosin in S. fradiae is conferred by methylation of 23S rRNA by TlrD and RlmAII. Here, we demonstrate that yxjB encodes RlmAII in Bacillus subtilis and that YxjB-specific methylation of 23S rRNA in the peptide exit tunnel confers tylosin resistance. Growth in the presence of subinhibitory concentrations of tylosin results in increased rRNA methylation and increased resistance. In the absence of tylosin, yxjB expression is repressed by transcription attenuation and translation attenuation mechanisms. Tylosin-dependent induction of yxjB expression relieves these two repression mechanisms. Induction requires tylosin-dependent ribosome stalling at an RYR arrest motif at the C terminus of a leader peptide encoded upstream of yxjB. Furthermore, NusG-dependent RNA polymerase pausing between the leader peptide and yxjB coding sequences is essential for tylosin-dependent induction. Pausing synchronizes the position of RNA polymerase with ribosome position such that the stalled ribosome prevents transcription termination and formation of an RNA structure that sequesters the yxjB ribosome binding site. On the basis of our results, we are renaming yxjB as tlrB

    Friday Soapbox Session C

    No full text
    Presentations include: Automated Technology and the Trouble with (Zachary Mandell) The Possible Worlds of Reading and Virtual Embodiment in Digital Humanities: Why Reading is not being \u27Re-Made\u27 in the Technological Era (Danielle Farrar) The Influence of Digital Technology on Music Creation by Electronic Musicians (Jaehoon Choi and Norman Makoto Su) STEManism: Current and Future Horizons of Interdisciplinary Collaboration between the Humanities, Digital Humanities, and STEM (Alex Ayris, Richard Paris and Haley Adams) A Cultural Scripts and Prototype Theory Approach to Studying the Digital Humanities in Different International and Intercultural Contexts (Kirk St. Amant) A Database for Embodied Technology (Andrew Iliadis and Isabel Pedersen

    Expression of Bacillus subtilis ABCF antibiotic resistance factor VmlR is regulated by RNA polymerase pausing, transcription attenuation, translation attenuation and (p)ppGpp

    No full text
    Since antibiotic resistance is often associated with a fitness cost, bacteria employ multi-layered regulatory mechanisms to ensure that expression of resistance factors is restricted to times of antibiotic challenge. In Bacillus subtilis, the chromosomally-encoded ABCF ATPase VmlR confers resistance to pleuromutilin, lincosamide and type A streptogramin translation inhibitors. Here we show that vmlR expression is regulated by translation attenuation and transcription attenuation mechanisms. Antibiotic-induced ribosome stalling during translation of an upstream open reading frame in the vmlR leader region prevents formation of an anti-antiterminator structure, leading to the formation of an antiterminator structure that prevents intrinsic termination. Thus, transcription in the presence of antibiotic induces vmlR expression. We also show that NusG-dependent RNA polymerase pausing in the vmlR leader prevents leaky expression in the absence of antibiotic. Furthermore, we demonstrate that induction of VmlR expression by compromised protein synthesis does not require the ability of VmlR to rescue the translational defect, as exemplified by constitutive induction of VmlR by ribosome assembly defects. Rather, the specificity of induction is determined by the antibiotic's ability to stall the ribosome on the regulatory open reading frame located within the vmlR leader. Finally, we demonstrate the involvement of (p)ppGpp-mediated signalling in antibiotic-induced VmlR expression

    Acceleration of Diabetic Wound Healing with PHD2- and miR-210-targeting Oligonucleotides

    No full text
    © Copyright 2019, Mary Ann Liebert, Inc., publishers 2019. In diabetes-associated chronic wounds, the normal response to hypoxia is impaired and many cellular processes involved in wound healing are hindered. Central to the hypoxia response is hypoxia-inducible factor-1α (HIF-1α), which activates multiple factors that enhance wound healing by promoting cellular motility and proliferation, new vessel formation, and re-epithelialization. Prolyl hydroxylase domain-containing protein 2 (PHD2) regulates HIF-1α activity by targeting it for degradation under normoxia. HIF-1α also upregulates microRNA miR-210, which in turn regulates proteins involved in cell cycle control, DNA repair, and mitochondrial respiration in ways that are antagonistic to wound repair. We have identified a highly potent short synthetic hairpin RNA (sshRNA) that inhibits expression of PHD2 and an antisense oligonucleotide (antimiR) that inhibits miR-210. Both oligonucleotides were chemically modified for improved biostability and to mitigate potential immunostimulatory effects. Using the sshRNA to silence PHD2 transcripts stabilizes HIF-1α and, in combination with the antimiR targeting miR-210, increases proliferation and migration of keratinocytes in vitro. To assess activity and delivery in an impaired wound healing model in diabetic mice, PHD2-targeting sshRNAs and miR-210 antimiRs both alone and in combination were formulated for local delivery to wounds using layer-by-layer (LbL) technology. LbL nanofabrication was applied to incorporate sshRNA into a thin polymer coating on a Tegaderm mesh. This coating gradually degrades under physiological conditions, releasing sshRNA and antimiR for sustained cellular uptake. Formulated treatments were applied directly to splinted full-thickness excisional wounds in db/db mice. Cellular uptake was confirmed using fluorescent sshRNA. Wounds treated with a single application of PHD2 sshRNA or antimiR-210 closed 4 days faster than untreated wounds, and wounds treated with both oligonucleotides closed on average 4.75 days faster. Markers for neovascularization and cell proliferation (CD31 and Ki67, respectively) were increased in the wound area following treatment, and vascular endothelial growth factor (VEGF) was increased in sshRNA-treated wounds. Our results suggest that silencing of PHD2 and miR-210 either together or separately by localized delivery of sshRNAs and antimiRs is a promising approach for the treatment of chronic wounds, with the potential for rapid clinical translation
    corecore